Reprinted from Mathematics Magazine 38.5(1965)319.

A Diophantine Cubic

580. [March, 1965] Proposed by Joseph Arkin, Spring Valley, New York.

Is a solution in integers possible for the equation $(c-a-b)^{3}=24 a b c$, where a, b and c are not zero?

Solution by Stanley Rabinowitz, Far Rockaway, New York.
I shall make use of the identity

$$
24 a b c=(a+b+c)^{3}-(a-b+c)^{3}-(-a+b+c)^{3}+(c-a-b)^{3}
$$

Substituting this in the given equation,

$$
(c-a-b)^{3}=24 a b c
$$

gives

$$
(a+b+c)^{3}=(a-b+c)^{3}+(-a+b+c)^{3}
$$

But it is known that the equation $x^{3}+y^{3}=z^{3}$ has no integral solutions unless x, y, or z is zero which would imply that a, b, or c were zero.

Hence, the given equation has no nontrivial integer solutions.

